alexnet网络结构

在这里插入图片描述

经典卷积神经网络模型—AlexNet,VGG,GoogLeNet

AlexNet 特征 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。 将sigmoid激活函数改成了更加简单的ReLU激活函数。 用Dropout来控制全连接层的模型复杂度。 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合 第一个卷积层 输入的图片大小为:2242243(或者是2272273) 第一个卷积层为:111196即尺寸为1111,有96个卷积核... »

实验结果

AlexNet 论文总结

AlexNet 论文总结一、论文翻译摘要(一)引言(二)数据集(三)架构1. ReLU非线性2. 多GPU训练3. 局部响应归一化4. 重叠池化5. 整体架构(四)减少过拟合1. 数据增强2. Dropout(五)学习细节(六)结果1. 定性评估(七)探讨二、论文笔记(一)网络架构梳理1. 卷积层 12. 卷积层 23. 卷积层 34. 卷积层 45. 卷积层 56. 全连接层 17. 全连接层 ... »