回归

如何在python中实现线性回归

线性回归是基本的统计和机器学习技术之一。经济,计算机科学,社会科学等等学科中,无论是统计分析,或者是机器学习,还是科学计算,都有很大的机会需要用到线性模型。建议先学习它,然后再尝试更复杂的方法。 本文主要介绍如何逐步在Python中实现线性回归。而至于线性回归的数学推导、线性回归具体怎样工作,参数选择如何改进回归模型将在以后说明。 回归 回归分析是统计和机器学习中最重要的领域之一。有许多可用的回归... »

带你学习Python如何实现回归树模型

带你学习Python如何实现回归树模型

所谓的回归树模型其实就是用树形模型来解决回归问题,树模型当中最经典的自然还是决策树模型,它也是几乎所有树模型的基础。虽然基本结构都是使用决策树,但是根据预测方法的不同也可以分为两种。第一种,树上的叶子节点就对应一个预测值和分类树对应,这一种方法称为回归树。第二种,树上的叶子节点对应一个线性模型,最后的结果由线性模型给出。这一种方法称为模型树。 今天我们先来看看其中的回归树。 回归树模型 CART算... »

使用keras实现非线性回归(两种加激活函数的方式)

我就废话不多说了,大家还是直接看代码吧~ import keras import numpy as np import matplotlib.pyplot as plt #Sequential 按顺序构成的模型 from keras.models import Sequential#Sequential是模型结构,输入层,隐藏层,输出层 #Dense 全连接层,Activation激活函数 fro... »

使用Keras实现简单线性回归模型操作

神经网络可以用来模拟回归问题 (regression),实质上是单输入单输出神经网络模型,例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值。 一、详细解读 我们通过这个简单的例子来熟悉Keras构建神经网络的步骤: 1.导入模块并生成数据 首先导入本例子需要的模块,numpy、Matplotlib、和keras.models、keras.layers模块。Sequent... »

sklearn线性逻辑回归和非线性逻辑回归的实现

线性逻辑回归本文用代码实现怎么利用sklearn来进行线性逻辑回归的计算,下面先来看看用到的数据。到此这篇关于sklearn线性逻辑回归和非线性逻辑回归的实现的文章就介绍到这了,更多相关sklearn线性逻辑回归和非线性逻辑回归内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!您可能感兴趣的文章:python sklearn库实现简单逻辑回归的实例代码 »

Python基于numpy模块实现回归预测

代码如下 import numpy as np from matplotlib import pyplot as plt # 用numpy生成数据t ,y t = np.arange(1,10,1) y = 0.9 * t + np.sin(t) model = np.polyfit(t, y ,deg=1) # np.polyfit是numpy提供的加分分析方法,deg=1,指定模型为1阶的,返... »

python rolling regression. 使用 Python 实现滚动回归操作

滚动回归 所谓滚动回归,通常用在时间序列上。记当前时刻为 t,回归时长为 s,则一直使用 当作自变量来预测 。使用滚动回归的目的通常是为了避免未来函数对于回归的影响。 具体来说,如果我们直接用所有数据来建立线性回归模型,则回归系数 ,是关于所有 x 与所有 y 的函数。然而,我们在 时是不知道未来的数据点的!如果使用全部数据进行回归则相当于未卜先知,会造成严重的过拟合。 Python实现 之前 p... »

基于PHP实现的多元线性回归模拟曲线算法

本文实例讲述了基于PHP实现的多元线性回归模拟曲线算法。== $m2) else { for { for { $data_new[$i][$k] = 0; for ($j = 0; $j trans($arr_x); $ »

利用python实现逐步回归

逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。 本例的逐步回归则有所... »

python 线性回归分析模型检验标准–拟合优度详解

python 线性回归分析模型检验标准–拟合优度详解

建立完回归模型后,还需要验证咱们建立的模型是否合适,换句话说,就是咱们建立的模型是否真的能代表现有的因变量与自变量关系,这个验证标准一般就选用拟合优度。 拟合优度是指回归方程对观测值的拟合程度。度量拟合优度的统计量是判定系数R^2。R^2的取值范围是[0,1]。R^2的值越接近1,说明回归方程对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归方程对观测值的拟合程度越差。 拟合优度问题目前还... »

关于多元线性回归分析——Python&SPSS

关于多元线性回归分析——Python&SPSS

所以我又用sckit-learn和SPSS验证了一下。先看sckit-learn,在sklearn中,线性回归是使用的最小二乘法而不是梯度下降法,用起来也十分的简单。以上这篇关于多元线性回归分析——Python&SPSS就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。您可能感兴趣的文章:sklearn+python:线性回归案例Python利用逻辑回归分... »

sklearn+python:线性回归案例

使用一阶线性方程预测波士顿房价 载入的数据是随sklearn一起发布的,来自boston 1993年之前收集的506个房屋的数据和价格。load_boston()用于载入数据。 from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from ... »

Python 线性回归分析以及评价指标详解

废话不多说,直接上代码吧! """ # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。 # 数据集中的特征值总共10项, 如下: # 年龄 # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6 (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都... »

详解基于Jupyter notebooks采用sklearn库实现多元回归方程编程

一、导入excel文件和相关库 import pandas; import matplotlib; from pandas.tools.plotting import scatter_matrix; data = pandas.read_csv("D:\\面积距离车站.csv",engine='python',encoding='utf-8') 显示文件大小 data.shape data 二.绘... »

python实现梯度下降和逻辑回归

本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下 import numpy as np import pandas as pd import os data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理 m, n = data.shape dataMatIn = np.ones((m, n)) dataMatIn[:... »

python使用梯度下降算法实现一个多线性回归

python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下 图示: import pandas as pd import matplotlib.pylab as plt import numpy as np # Read data from csv pga = pd.read_csv("D:\python3\data\Test.csv") # Normalize the data 归... »

python实现门限回归方式

门限回归模型(Threshold Regressive Model,简称TR模型或TRM)的基本思想是通过门限变量的控制作用,当给出预报因子资料后,首先根据门限变量的门限阈值的判别控制作用,以决定不同情况下使用不同的预报方程,从而试图解释各种类似于跳跃和突变的现象。其实质上是把预报问题按状态空间的取值进行分类,用分段的线性回归模式来描述总体非线性预报问题。 多元门限回归的建模步骤就是确实门限变量、... »

Python利用逻辑回归分类实现模板

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。 好了,下面开始正文。 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集。 虽然代码类似于梯度下降,但他是个分类算法 ... »

最新版学习笔记—Python机器学习基础教程(3)线性模型(回归)—附完整代码

最新版学习笔记—Python机器学习基础教程(3)线性模型(回归)—附完整代码

线性模型1. 用于回归的线性模型2. 线性回归3. 岭回归4. Lasso线性模型是实践中广泛应用的一类模型。线性模型利用输入特征的线性函数进行预测。这里就在不写需要什么环境了,可以翻看之前的笔记。我们在一维wave数据集上学习参数w和b。 »

机器学习 回归篇(1)——多元线性回归

机器学习 回归篇(1)——多元线性回归

机器学习 回归篇(1)——多元线性回归摘要线性回归简介python实现运行结果及可视化 摘要 本文介绍了最基础的回归问题——多元线性回归,并通过python进行实现及可视化展示运行结果。 线性回归简介 线性回归问题的重点在于如何求解回归函数的截距和系数。 1、构建代价函数(也叫损失函数):平均平方误差。 2、通过最小二乘法或其他优化算法进行求解,因为线性回归的代价函数为凸函数,所以一般的经典优化算... »

线性回归——最小二乘法(公式推导和非调包实现)

线性回归——最小二乘法(公式推导和非调包实现)

接上一篇文章【线性回归——二维线性回归方程(证明和代码实现)】 前言: 博主前面一篇文章讲述了二维线性回归问题的求解原理和推导过程,以及使用python自己实现算法,但是那种方法只能适用于普通的二维平面问题,今天博主来讲一下线性回归问题中更为通用的方法,也是我们实际开发中会经常用到的一个数学模型,常用的解法就是最小二次乘法和梯度下降法.博主今天对最小二乘法进行推导并使用Python代码自定义实现,... »

python 进行各种回归

python 进行各种回归

基本回归:线性、决策树、SVM、KNN 集成方法:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees ##学会了数据分层抽样,以及各种回归的代码书写。可能还需要注意调参等。 继续学习网址:使用sklearn做各种回归 数据准备 from matplotlib import pyplot as plt %matplotlib inline plt.st... »

利用线性回归预测隧道车流量

利用线性回归预测隧道车流量

回归问题的学习等价于函数拟合:使用一条函数曲线使其很好的拟合已知函数且很好的预测未知数据。基于给定的训练数据集构建一个模型,根据新的输入数据预测相应的输出。 »

基于回归模型的地理空间经纬度预测实践

基于回归模型的地理空间经纬度预测实践

      在值预测相关的任务里面回归模型使用的非常得多,从最简单的逻辑回归模型到复杂点的集成回归模型,可以根据具体任务的适用程度来尝试或者决定使用什么样的模型来构建自己的预测模型。      本文主要是基于APP采集到的行走数据,也就是地理空间里面的经纬度数据来对未来位置进行预测分析,我们这里主要是将行走的数据建模成了一个时序数据分析问题,因为物体的移动轨迹不会是随机移动的是随着时间推移,有规律... »

基于tensorflow实现线性回归的模型训练预测

基于tensorflow实现线性回归的模型训练预测

基于tensorflow实现线性回归的模型训练预测 import numpy as np import matplotlib.pyplot as plt import tensorflow as tf if __name__ == '__main__': with tf.Graph().as_default(): # 一、执行图的构建 # a. 定义占位符 input_x = tf.placeho... »

Page 1 of 12123»